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A spin-I/2, nearest neighbor Heisenberg Hamiltonian acting on a periodic, 
d-dimensional lattice is considered. Multi-spin-wave solutions to the Schr6dinger 
equation for a Heisenberg ferromagnet involve an unlimited superposition of 
spin-reversal operators at sites. This violates the physical restriction that no more 
than one excitation reside on any one site. This exclusion rule affects spin-wave 
interaction--the determination of these effects is called the kinematical problem. 
A general nonperturbative treatment that includes kinematical effects in spin- 
wave theory is developed along the following lines. Using the property of the 
Heisenberg Hamiltonian that it does not couple states obeying the single occupa- 
tion condition at all sites with states that violate the single-occupancy condition 
at some sites, the unphysical multiply occupied states can be eliminated by a 
nonunitary transformation of the eigenvalue equation. An overcomplete Hamil- 
tonian matrix is obtained that contains all the physical eigenvalues as a subset 
of its spectrum. Overcompleteness is shown to be a large part of the kinematical 
problem and several schemes to handle it are discussed. The remainder of the 
kinematical problem lies in the nonorthogonality of spin waves. It is shown that 
a new type of distribution, one that is neither Bose nor Fermi, correctly describes 
free spin-wave statistics at all temperatures. This formal but nonetheless complete 
solution to the overcompleteness aspect of the kinematical problem is then 
carried over, in toto, to the boson formulation of the spin Hamiltonian. Applica- 
tion to the calculation of the partition function and to thermal Green's functions 
is noted. 

1. I N T R O D U C T I O N  

T h e  H e i s e n b e r g  H a m i l t o n i a n  fo r  a l o c a l i z e d  f e r m i o n i c  s y s t e m  is t he  

p a r e n t  o f  o t h e r  m u c h - s t u d i e d  sp in  m o d e l s  ( I s ing ,  X - Y ,  a n d  s p h e r i c a l  

m o d e l s ,  a m o n g  o t h e r s ) .  A c c u r a t e  ana ly t i c a l  c a l c u l a t i o n  o f  t he  p a r t i t i o n  

f u n c t i o n  f o r  t h e  H e i s e n b e r g  m o d e l  is l i m i t e d  to  t h e  low-  a n d  h igh -  

t e m p e r a t u r e  r e g i m e s  by  t h e  use  o f  e x p a n s i o n s  in T a n d  T -~. A n  exac t  
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quantum mechanical description of dynamics at intermediate temperatures 
including the critical region would be achieved by solving a spin-wave 
theory that preserves the original state space of denumerable configurations 
in which 2 Stot~ is a constant of the motion and S~ is a good quantum number. 
The two main obstacles to such a solution are the dynamical and kinematical 
problems. The first is to find a means of solving the Schr/Sdinger equation 
proceeding without regard to additional physical constraints. Here the 
spin-wave approach uses plane waves as approximate eigenfunctions about 
which corrections are computed. The second is to establish a faithful relation 
between the function space used to solve the equations of motion and the 
Hilbert space; the problem stems from their different dimensions (see 
below). The kinematical problem arises in spin-wave theory because super- 
positions of spin-wave creation operators can include components in which 
spin S wavefunctions are excited more than the maximum 2S times. In the 
case of spin 1/2, such multiple excitations violate the basic restriction of 
the Heisenberg spin model, in which no more than one electron with either 
spin up or spin down can occupy a single site. The effect arises because 
the boson formalism includes states in which there is a superposition of 
more than S spin excitation operators at a site. The kinematical interaction, 
a term we will reserve for use in the context of the boson formulation, is 
a complicated coupling interaction that acts in addition to a quartic spin- 
wave interaction. The kinematical interaction has resisted treatment by 
perturbative means, that is, the use of expansions in some small parameter. 

The kinematical problem is an important factor in any situation where 
the description of the system includes excited states with occupation num- 
bers that are a substantial fraction of the total system size. In these cases 
a large number of spin-wave states are affected by the limitation of no more 
than S spins per site and this restriction cannot be ignored. Such situations 
are the thermodynamic behavior of Heisenberg spin systems outside the 
low-temperature regime (kB T a substantial fraction of J),  at proportionally 
lower temperatures for smaller systems (because, in the absence of external 
fields, the spontaneous magnetization of small systems is metastable with 
respect to the creation of many zero-wavevector spin waves), and for such 
phenomena that are described using wave packets that contain a large 
number of excitations localized in a small region. Despite nearly 30 years 
and many attempts (Vaks et al., 1968a; Wortis, 1965; Morita and Tanaka, 
1965; Marshall and Murray, 1969; Kenan, 1967; Wenzel and Wagner, 1977; 
Szaniecki, 1965; Parmenter, 1984; Goldhirsch and Yakhot, 1980; Shi-Xun 
and Rui-Bau, 1980; Silberglitt and Harris, 1968) since Dyson's (1956) 
original exposition of the kinematical problem, no general solution or even 
unified picture of kinematical effects has emerged. 
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This work presents both a complete description and a formal resolution 
of the kinematical problem in both its spin and Bose Hamiltonian aspects. 
By distinguishing overcompleteness and nonorthogonality as two indepen- 
dent features, one obtains a deeper understanding of the mathematics of 
the problem and manner in which it can be solved. However, in this article, 
the job of developing practical approximation schemes is only begun. An 
approximation scheme for including the nonorthogonality of spin waves in 
the perturbative scheme using the boson Hamiltonian and thermal Green's 
functions will be presented in a separate work. 

The following Heisenberg Hamiltonian models the interaction of elec- 
trons through an exchange effect proportional to the overlap integral 

Jij = (q~a,~(~j e2/r(i - J)[ ~aj)l q~b,i) 

where Iq~,,i) is a one-electron Wannier wave function for electron a centered 
at site i, (q~i] ~j)= 3a, b3~j, and J~i = J or 0 depending on whether or not i and 
j are nearest neighbors. If  J >  0 (<0),  the model is ferromagnetic (antifer- 
romagnetic), we have 

2j~ Sj" Sj+~ (1) 

Y~s is a sum over nearest neighbor vectors 8. A ground state 10) is chosen 
with a totally symmetric wave function and a maximum magnetic quantum 
number m; m = N/2 for an N-electron system (10) is a lowest energy state 
for a ferromagnet). In the absence of an external magnetic field this energy 
is N-fold degenerate; in the presence of an external field it is unique. Excited 
states are labeled with a spin-wave number n = (N /2 -m) ,  n = N/2 for 
states with zero z-component magnetization. These states are given by spin 
creation operators on the ground state, 

V(n): {~(S~-)%10): ~ak=n}  unnormalized (2) 

with S~- given in terms of  spin operators according to (5). 
The one-spin-wave eigenstates, magnons, are of plane wave form, as 

was obtained by Bloch (1930). Wortis (1963) obtained the exact two-spin- 
wave eigenstates by a factoring of the eigenvalue equation into relative and 
absolute coordinates (separability is a consequence of wavevector conserva- 
tion). This solution was corrected for the presence of unphysical states by 
Liu and Chow (1978). Closed-form expressions for the eigenfunctions of a 
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one-dimensional system have been obtained by Bethe (1931; see also 
Orbach, 1958) and Gochev (1972). 

In the absence of  an external B field the eigenvalues of (1) may be 
obtained through spin-algebraic methods (Pauncz, 1979), where the basis 
is symmetry-adapted to 2 _ S t o t -  (~i  Si) ~ (~J Sj) with eigenvalues S ( S +  1), S = 
O, 1 . . . .  , N / 2 ;  and StZot=Y~i S~ with eigenvalues m = + S , . . . , - S .  The n- 
spin-wave states of equation (2) are constructed as linear combinations of 
the symmetry-adapted basis vectors with m = N / 2 -  n and S = N / 2 ,  N / 2  - 

1 , . . . ,  N / 2  - n. Only m continues to be a good quantum number. Although 
this formulation can only be applied in practice to small systems, it shows 
that the spectrum of n-spin-wave excitations contains as a subset all those 
eigenvalues that occur for ( n ' <  n)-spin-wave states. The spectrum at B = 0 
is highly degenerate; n-spin-wave states whose energies are equal to n'-spin- 
wave states, with n > n', can be considered bound states. 

Bloch used the one-spin-wave states describing a free-magnon gas to 
derive the T 3/2 law for the low-temperature magnetization. Subsequently 
Dyson (1956), Maleev (1958), and then Wortis (1965) attempted to incorpor- 
ate the effects of higher spin-wave states on the low-temperature thermody- 
namics of a ferromagnet, specifically to corrections of the T 3/2 law. Both 
authors transform (1) to an effective Hamiltonian HB written in terms of 
Bose operators [equation (34)] and employ a Fourier representation that 
requires an enlargement of the Hilbert space to include states with more 
than one raising operator at each site, a violation of the exclusion principle. 
The addition of these improper states adds unphysical eigenvalues that can 
cause the partition function to diverge (Wortis, 1965). Dyson named the 
elimination of the effects of these unphysical states the kinematical problem. 
The object of this paper is to solve the kinematical problem that arises in 
the boson formulation. The problem is first investigated in the context of 
spin operators, where techniques are developed that are then applied to the 
Bose operator formalism. 

Essential to the present work is the interdependent role of kinematics 
and dynamics in the spin problem. It will be seen that the eigenvalues of 
the system are obtained from a matrix that is itself the product of two 
component matrices, one containing all the kinematics and another all the 
dynamics. The strong coupling of spin waves occurs to a large extent because 
the basis that approximately diagonalizes the dynamical component-- the  
spin-wave basis--fails to approximately diagonalize the kinematic com- 
ponent. The nondiagonality of the kinematic component can be ignored at 
low temperatures because the thermodynamics is dominated by a subset of 
states that experience little kinematic interaction. These are highly magnet- 
ized states with few quasiparticle excitations. At higher temperatures, where 
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states with many excitations make a substantial contribution to the thermal 
behavior, perturbative spin-wave theory generates nonsense. This means 
that in general we do not have a noninteracting approximation. 

My main result is a general spin-wave description of the Heisenberg 
system, founded on a commutator algebra, that forms an approximately 
diagonal basis at long wavelengths and at all temperatures. The spin-wave 
strong coupling problem is not solved completely--strong coupling remains 
at short wavelengths--but it is pushed back into a more limited domain. 
We now have a complete and consistent noninteracting approximation 
based on wavelike excitations for the ferromagnet and related systems. Spin 
waves can be represented as bosons populating energy levels according to 
a new, spin distribution function. Interaction among these particles is given 
by a quartic Hamiltonian (the boson Hamiitonian of Dyson and Maleev) 
whose coupling is both weak at long wavelengths and generally nonlocal. 
Standard thermal perturbation theory can be applied in theory--knowing 
the noninteracting distribution function (the thermal propagator) and hav- 
ing a quartic, Bose interaction Hamiltonian suggest perturbation theory can 
also be carried out in practice. The quasiparticle approximation I am 
presenting is to SU(2) systems what noninteracting boson and fermion 
approximations are to interacting Bose and Fermi systems. Aside from the 
technical differences, the conceptual and perturbative role that these 
particles play is the same. 

The layout of the paper is as follows. In Section 2 improper states are 
defined in the spin operator formalism and distinguished from improper 
states of the boson formulation. Working with finite systems and a matrix 
representation of the Schr/Sdinger equation, it is shown that the secular 
equation can be transformed nonunitarily to a simpler expression in which 
improper states have zero eigenvalues. This is done by rewriting the secular 
equation, Det{[ G]([S]  - A )} = 0, where [ G] is the inner-product matrix and 
[S] is called the scattering matrix, as D e t ( [ G ] [ S ] - A )  = 0. We are allowed 
to make this simplification in the case of the Heisenberg Hamiltonian 
because proper  and improper states exhibit a particular lack of coupling. 
The secular equation for a function f of the Hamiltonian / t  [specifically 
the function e x p ( - ~ / t )  as appears in the partition function] is similarly 
transformed from Det([G]{f([S])-•})=O to Det{[G]f([S])-h}=O. In 
this case the improper states again generate zero eigenvalues. It is shown 
that the secular equation factors into two determinants, one involving only 
physical (or proper) states and another involving nonphysical (or improper) 
states. For spin operators, the improper states are shown to represent the 
extension of the basis to include extra, linearly dependent, degrees of 
freedom. This represents a reformulation of the kinematical problem from 
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a case involving unphysical degrees of freedom to one described by an 
overcomplete state space in which all the independent degrees of freedom 
are physical. 

In Section 3 the effects of overcompleteness (the zero eigenvalues) are 
removed; this embodies a formal solution to the kinematical problem. This 
is accomplished through an elimination of dependent degrees of freedom, 
that is, by a reduction of the state space so as to include only a linearly 
independent set of states. When the secular equation is written in terms of 
such a complete set, no extraneous zero eigenvalues appear. We formally 
obtain a Hamiltonian matrix, in terms of  a reduced set of the original 
spin-wave states, that represents only physical degrees of freedom and 
generates only physical eigenvalues. 

Section 4 considers the problem of realizing the state space reduction 
crucial to the solution of Section 3. The two approaches to overcompleteness 
problem considered first are the boson approximation of Bloch and the 
fermion approximation of Wenzel and Wagner. Because the first effects no 
state space reduction, while the second effects a reduction but fails to 
represent the rotational symmetry of the Hamiltonian, a third approach is 
introduced in Section 5. This final description of the state space embodies 
the SU(2) structure that is characteristic of quantum spin systems. As a 
result, we obtain a new distribution function describing spin waves. We 
conclude that the equilibrium properties of a Heisenberg ferromagnet, at 
finite temperatures and to lower order, are described by spin-wave excita- 
tions that populate the system according to an unusual distribution function 
that is neither Bose nor Fermi. 

Section 6 generalizes these results to the boson Hamiltonian of Dyson 
and Maleev. It is found that the use of the inner-product matrix as a 
projection operator factors the problem, as before, into independent physical 
and nonphysical spaces. The use of the inner-product matrix, described in 
Sections 2 and 3, and the state space selection of Sections 4 and 5 achieve 
the elimination of nonphysical dimensions of the boson Hilbert space. With 
this, we can develop a perturbative formulation of spin-wave theory which 
includes the correct kinematics. 

The bearing these techniques have on the thermal temperature Green's 
function formalism is noted in Section 6. 

2. ISOLATION OF IMPROPER STATES 

Consider a cubic, periodic lattice of N d < ~ sites with d any number 
of dimensions. The discussion is limited to the spin-l /2 case. The Pauli 
principle is represented by the requirement that no more than one raising 
operator may be assigned to any site. The Hamiltonian (1) has the wave- 
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number form 

k space /-) = ---J ~ T~S, .  S_~ 
2 ~ t = l  

(3) 

6 connects nearest neighbor sites. The relevant properties of the spin 
operators are (with h = 1) 

x space Si = �89162 S~ = S~ + iSf 
z • + - z [S~, S~] = +6jkSj, [Sl ,  Sk] = 26ikSl (4) 

S~-I0) = 0, Sil0) = -�89 for i, j, k site labels 

with the corresponding k-space properties 

S = N - d / 2 ~ e x p ( i p ~  .2~r~l s 

z -k - -  4- }%T d / 2 ~ •  + [S~, S , ] -  ~. ~,~+~, IS , ,  S ; ]  = 2 N  a/2S~+o 
(5) 

s;10~ = 0, s;~10) = -�89 

(S~)* = S-~ 

The ground-state energy is Eo = - J N a d / 4 ,  where d is the dimension 
of the lattice. 

The unnormalized basis consists of n-spin-wave states, products of 
raising operators at lattice sites, and is cumulatively assigned a single label 
R, 

[n~DR(i,j,...,k) ) : S { S ; ' ' "  S k i 0  ) (6) 

Capital Latin indices specify a unique nonordered set of site or wavevec- 
tor subscripts. When all sites in R are different the assignment of spin 
reversals conforms to the single-occupancy condition. Such ]"q~R) will be 
called proper states. When any two or more of the labels in R are identical, 
more than one spin-raising operator acts on some site or sites. Let R(im) 
indicate a labeling of this sort. Because the raising and lowering operators 
are nilpotent, that is, 

(S+)" = (S j )"  = 0 for any j  and any integer n > 1 

these states I"q~n(~,)) vanish. Nevertheless, it will be useful to keep track of 
where and when such spin arrangements occur. Because the zero state is 
still a state, we can include a copy of it whenever the assignment of spin 
operators leads to vanishing states through the nilpotence property. The 
basis will then include many copies of the zero vector, each assigned a 
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unique labeling, giving a many-to-one mapping of the space of spin-site 
assignments onto the space of states. We will refer to these assignments as 
improper states and label them as I"q,(im)). Although all such configurations 
are represented by the same state (i.e., are not linearly independent), it is 
consistent with standard treatment of overcomplete sets to refer to all the 
vectors in the set as different. This subtlety in nomenclature presents no 
difficulties as long as the underlying mathematical definition is retained. 
The essential feature is that the state space now includes and distinguishes 
two ways of distributing spin reversals among sites. 

Proper states in the position space basis, labeled by R(pr) and R'(pr), 
are orthonormal: 

rn n OC 
( qgR(pr) l q~R'(pr)) ~m,n~R(pr),R'(pr) 

A superposition of k-space states can be defined as in equation (2) as the 
product 

I"~,,(k,.k2,...)) = S ~ l S ~ \ ' ' "  SLI0) (7) 
As each S~ is a sum of  operators at sites, according to (5), some of the 
terms included in this product of sums will contain improper assign- 
ments, and hence vanishing components. However, I"r itself does not 
vanish. There remains a nonvanishing state I"r for every distinct 
K ( k l ,  k2 . . . .  , k,). The number of states "M is the number of ways to assign 
n wavenumber labels where each label takes a value in the first Brillouin zone 

" M = (  Nd + n - 1  

The number of proper states remains 

Thus, there are more approximate eigenvalues to the k-space spin-operator 
problem than proper states of the system despite the vanishing of the 
improper states. 

In addition, k-space states are not orthogonal. That is, for K and K '  
different, 

1 
("q~K I "q~K ') = 6K, K' + ~ f (  K, K')6K, oc,K',o~ (8) 

where f ( K ,  K')  is some function of the total 2n components described by 
K and K '  and 8K,o,,Kr is zero, unless the total wavenumber Ktot  = 

(kl + k2 +" �9 ")rood rq is equal for each of the d components of the two states. 
The vanishing of the improper elements in the Fourier expansion under- 
mines the unitarity of the Fourier transform. 
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These two effects, overcompteteness and nonorthogonality, which origi- 
nate in the exclusion principle, constitute the kinematical problem. 

In the boson formulation of Dyson and Maleev the spin states (6) and 
the spin operator Hamiltonian are replaced by boson states and an 
"equivalent" boson Hamiltonian. The transformation to boson operators 
is effected by the replacement of Sf and Sf by boson site creation and 
annihilation operators rt* and ~71, which obey It/*, ~h] = 3~,1. The ground 
state 10) is replaced by the state [0), formally defined by the property r/jl0) = 0. 
The boson Fock space is spanned by states I'~OR): 

I"~Rr ......... )) = . * ' ' "  r/* 10) (9) 

Unlike the spin operator states, an improper assignment R(im) of boson 
site-raising operators does not lead to a vanishing state, because the boson 

* and a .  may be operators are not nilpotent. Fourier-transformed states a .  
constructed in analogy with the Fourier-transformed spin operators of 
equation (5). Following (7), we superpose these states to construct a 
wavenumber basis labeled by K(/~1, . . . ) .  Unlike the spin-operator 
wavenumber states of equation (8), boson multi-spin-wave states are 
orthogonal. That is, using 

27r .._,_ \ 
* - -  N - d / 2  sfftR N j a~ - ~ exp. il.t �9 j r/i 

1 / 

where 

we have 

- or* c~*. . [0)  

< (10) 

If we allow all combinations of boson spin-wave creation operators 
operating on the state 10) to span the basis, then, in analogy with equation 
(2), the unnormalized boson spin-wave basis consists of the direct sum of 
subspaces of n spin waves: 

B= • OB(n) B(n): (a*)%[0): ak = n  ( l l )  
n = 0  

The boson Hamiltonian is defined by the requirement that when it acts 
on boson states, it models the scattering of spin operator states generated 
by the original Heisenberg Hamiltonian. Further discussion of the boson 
formulation is deferred to Section 4, where ideas developed in this and the 
following sections are applied in detail. For the moment it will suffice to 
say that the boson Hamiltonian [which is given by equation (34)] is of 
quartic form, that the quartic part represents spin-wave interaction, which 
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is weak at long wavelengths, and that the quadratic part is diagonal in the 
boson spin-wave basis, with associated free spin-wave eigenvalues. 

Before developing features particular to the spin operator space, it is 
useful to note general features common to both the Bose and spin formal- 
isms. In the spin operator formalism the improperly assigned spin operators 
act on the vacuum state to give the zero state, while in the boson formalism 
such an assignment of raising operators doe not give the zero state. While 
the spin operator formalism is faithful to the exclusion condition, its use 
in perturbation theory is complicated by spin commutation relations, 2 and 
by the absence of a natural separation of the Hamiltonian into interacting 
and noninteracting parts. The boson reformulation was invented as a tool 
to facilitate the application of perturbation theory. It exactly reproduces 
the dynamics of the Heisenberg Hamiltonian (in the sense that it reproduces 
all the same eigenvalues), but inherently violates the exclusion principle. 
This failure leads to extra eigenvalues and vectors, called unphysical or 
improper eigenvalues and vectors, which contribute to statistical sums when 
one computes thermal expectation values. It is remarkable that the inclusion 
of unphysical states in no way effects the physical eigenvalues or vectors. 
The explanation for this phenomena will emerge in the course of this 
analysis. It is just that property of the Heisenberg Hamiltonian that was 
recognized by Bethe (1931) and resulted in the Bethe ansatz. This ansatz 
allows closed-form expressions for the eigenfunctions of a linear spin system 
to be obtained in terms of coupled transcendental equations. 

As it has been introduced, kinematics appears distinct from the dynami- 
cal aspect of the eigenvalue problem. In addition, it may appear that the 
kinematical interaction has been defined in such away as to refer only to 
the boson formulation. Both of these perspectives are incorrect and have 
led authors to a variety of (often unrecognized) incomplete results (see 
footnote 2, for example). 

The exact solution to the kinematical problem that is developed here 
shows kinematical effects to exert a complicated influence upon the per- 
turbative solutions of the SchrSdinger equation. A key point is that the 
degree to which the kinematical and dynamical interactions are coupled 
depends on the approximations used to solve the eigenvalue problem. In 
an exact solution of the secular equation one can separate dynamical and 
kinematical effects and solve them independently. However, in a perturba- 
tive solution (an expansion in orders of the coupling parameter about free 
spin-wave states) the two interactions do not separate. Marshall and Murray 
(1969) have found that only in the low-temperature limit, where S ~ oo and 

2Two instances of note where a spin operator perturbation theory has been employed are Vaks 
et al. (1968a) and Lewis and Stinchcombe (1967). In neither case has overcompleteness in k 
space beeen recognized. 
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operator expansions are truncated at low order, does the kinematical interac- 
tion separate from the dynamical interaction and cancel out in the calcula- 
tion of certain quantities. Wenzel and Wagner (1977) have attempted to 
incorporate kinematical effects through a reduction of the space of eigen- 
functions--eigenfunctions that are obtained as corrections to free spin waves 
through an expansion in the dynamical interaction alone. 

Kinematical effects are not limited to the boson formulation, but also 
occur in the spin-operator formalism. The kinematical problem consists of 
two parts: overcompleteness and nonorthogonality. These effects persist for 
spin waves defined with respect to either Bose or spin operators. The real 
culprit here is the wavevector description which is at the heart of (the 
present) perturbation theory-- i t  is in the transformation to the wavevector 
basis that kinematical restrictions, clear in position space, become truly 
obscure. 

It should be noted that the kinematical effects that give rise to boson 
improper states and improper eigenvalues are not the same as those that 
generate the improper states and values that appear in the spin formalism. 
The boson formalism has nonphysical states that are nonzero and linearly 
independent; the spin-operator formulation has an overcomplete spin-wave 
space in which a large number of states are linearly dependent. The context 
of the discussion will indicate which of these two species of improper 
phenomena is being addressed. 

Turning specifically to the spin operator formalism, recall that the 
number of spins flipped is a constant of  the motion. Since every multi-spin- 
wave state is some combination of products of spin flips, spin-flip conserva- 
tion implies that the total number of spin waves is a constant of the motion. 

Spaces of different numbers of  spin waves are considered indepen- 
dently. The n-spin-wave energies are solutions to the Hamiltonian secular 
equation. The eigenvalue equation Hl"q~p)=Al"~pp), written in terms of 
eigenstates ]"q~K)----Y~K QKPI"~OK), for some unitary transformation QKP, can 
be written in matrix element form as 

(n~~ 2 (nqgKIQ~PKAQK'p'Inq~K ') (12) 
K,K '  K ,K '  

Using the following expression for the Hamiltonian matrix 

[H]KK' = <"~;K [ • HSK"K'I"~PK") = (["G]["S])KK' (13) 
K "  

gives the secular equation 

Det([Q+](["G]["S] - h ["G])[Q])  = 0 

Hence, 

Det(["G](["S] - A)) = 0 (14) 
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where ["S] is called the scattering matrix and [nG] is the inner-product 
matrix. ["G]KK, = ("~K I"qbK ') (which is not the unit matrix). ["G][nS]KK, 
is the K, K '  component of the product of [nG] and ["S] matrices. Capital 
letters indicate matrices in the wavevector basis. Transforming to a site 
representation by inserting inverse Fourier transform matrices [U]  and 
[U+], where [ U] = [U+] -1, and indicating matrices in the site basis by 
lower case letters, we have 

["h]R,R, = ([ U]§ U][ U]§ U])R,~, 

= (["g]["s]).,R, 

Det{["g](["s] - A)} = 0 (15) 

The dimension of both [ng] and [nG] is nM, the number of n-spin-wave 
states. ["g] can be divided into two sectors, an upper left sector of dimension 
"A that accounts for the inner product of all proper  states and a lower right 
sector containing the inner products of improper states. Since we are in a 
position space basis, 

Similarly, ["s] can be broken into four quadrants, which, starting in 
the upper left and going clockwise, correspond to scattering from proper 
to proper, proper to improper, improper to improper, and improper to 
proper states: 

InS] = F S(PA)x(A) W(aA)x(M-A) ] 
]WC(M_A)• wbM_A)x(M_A) J (17) 

where the n superscript has been suppressed. These matrix elements are 
well defined because H acts on a particular assignment of spins to generate 
"scattering" to other spin assignments, without regard to whether or not 
the states themselves actually vanish. Distinguishing the ["s] and ["g] factors 
of the Hamiltonian matrix ["h] effectively separates the properties of the 
Hamiltonian from the properties of the states. If we use only the properties, 

S]I0 ) = -110) and S~-I0 ) = 0 

but not the nilpotence property, then we find 

I~I 17I ( S+r )arl O> 
r 

= Z (aj --b(aj§ _1) lq (s+)~ 
j,6 r 

+ 2  [a j -  O ( a j - 2 + e ) ( a } + a j - 4 ) ]  l l  (S+~) ~247 ..... ~,JlO) (18) 
j,6 �9 
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where the 0 <  e < 1, used in conjuction with the theta function, ensures 
that the ( a ] +  a t - 4 )  contribution vanishes if a t is less than two. If the initial 
state is proper  and has single spins raised at some nearest neighbor sites, 
then the second term above generates an improper state with two creation 
operators acting on the same site. There is scattering from proper to improper 
states, but no scattering from improper to proper states. For the latter to 
occur, all occupation numbers ai for i---j in the initial state would have to 
be proper (that is, -<1), while aj =2  at only one site j. Then, as long as at 
least one of the nearest neighbor sites about site j was unoccupied, the 
second term of (18) would take a spin from site j and move it to the 
unoccupied site. However, the coefficient of this second term vanishes 
whenever aj = 2, so this type of scattering has vanishing matrix elements. 
Thus, the submatrix WC(M_A)• in expression (17) vanishes. 3 

Returning to equation (14), notice that since the determinant of a 
product equals the product of determinants, and since Det[ng] =0,  the 
secular equation reduces to 0 = 0. It is the zero norms of the improper states 
that are responsible. One's first inclination might be to return to a faithful 
representation of the problem by eliminating all improper degrees of free- 
dom. While this would be a straightforward matter in position space, it 
remains unclear how this can be effected in k space. Therefore, I propose 
the following ansatz; replace the secular equation (14) with the following 
expression; 

Det([~g][ns] - A) = 0 (19) 

where ["g]["s] is just the Hamiltonian matrix. Using equation (16), we can 
write the argument of the determinant as 

[ng][ns]--Z~ =[ ([S]-/~](A)x(A) [W](A)x(M-A) ] (20) 
0 (--X)EM-A)• 

so that equation (19) becomes 

Det(["s ](A)• -- A ) Det(--A)(M_A)• 

= ( - A )  M-A Oet([nS](a)x(A)--h) = 0  

The solutions to equation (19) consists of nA proper eigenvalues, identical 
to those generated from the formulation of the problem that contained no 
unphysical states, plus n M - ~ A  eigenvalues at zero. 

The adoption of equation (19) does not resolve anything in itself, it 
merely postpones the removal of improper degrees of freedom until after 

3This was noticed for two-spin-wave interactions by Boyd and Callaway (1965). 
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the eigenvalue problem has been solved. This is in contrast to the original 
formulation of equation (12), which requires that improper states be 
removed before the secular determinant is taken. The advantage of the new 
formulation is that only one matrix needs to be to diagonalized, the Hamil- 
tonian matrix. It is not necessary to first diagonalize the inner product 
matrix, remove improper states, and then diagonalize the remaining Hamil- 
tonian matrix. Computations can be carried out using improper states and 
then their contributions can be removed afterward. 

This ansatz can also be applied to the problem of diagonalizing any 
power series in/4.  If  the action of f ( / - ) )  on I~) is represented by the matrix 
[f(/-))],  then the ansatz tells us to make the following replacement: 

Det{[g] (f(/-))  ] - A )} = 0 ~ Det{[g][f(/~r)] - A} = 0 (21) 

Since f( /-))  is a power series in /4 ,  the matrix representation for its action 
on Iq~) is a power series in [s]. If  one considers an arbitrary term in this 
expansion, then 

(~DAI( I~'I)mI~B) = ([g][s]m)A,B (22) 

Because of  the vanishing of matrix elements between improper and proper  
states, 

[s]m . [[SP]oA)X(A) [wa(m)](A)• 
[wq(%_a)• ] 

and 

[ ] A)• (23) Det{[g][ f (H)] -  1} = Det [ f ( [ s  ])] - A 0 
(--A)(~-A)• 

Of the eigenvalues obtained, "A are the same as if the improper states were 
eliminated initially while the " M -  "A unphysical zero eigenvalues remain. 

In the present context, [ U] is defined as an "M • "M unitary matrix 
representing the Fourier transform. The Hamiltonian matrix can be written 
in a k-space basis as 

= ([o][s]),, , , , ,  

= [H]K,K, (24) 

where I have used the condensed notation 

[ u ]+ l~ ,>-= 2 [ u ] ; , , , l ~ , )  = I~,,> 
R'  

The spectrum of [H]  consists of "A physical eigenvalues and " M - " A  
unphysical eigenvalues at zero. 
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To review, the restructuring of the secular equation given by equation 
(19) results in a consistent matrix formulation of the Heisenberg Hamil- 
tonian in the spin operator  context that includes improper  states and 
generates ~M - "A (the dimension of the unphysical sector) improper  eigen- 
values of  value zero. 

3. O V E R C O M P L E T E N E S S  AND THE KINEMATICAL P R O B L E M  

In Section 2, I proposed solving for the eigenvalues of  the Hamiltonian 
matrix of  equation (12). It is easy to reobtain the results of  Section 2. Notice 
from equations (16) and (17) that although the order of  the matrices [ng] 
and [ns] is nM, the rank of [ng] is only hA. The product [ng][nS] must have 
rank less than or equal to ~A because the rank of a product is no larger 
than the largest rank of its factors. 4 Whenever one diagonalizes a matrix of 
rank A, where A is less than the order of  the matrix M, one always gets at 
least M -  A zero eigenvalues--this is a consequence of the M-dimensional  
rank-A matrix being overcomplete.  While this is evident from equation (20) 
in the position space basis, it means, on the other hand, that the Hamiltonian 
matrix in the k-space basis is also overcomplete. This means that some of 
the spin-wave states are linearly independent. A complete basis can be 
obtained by reducing the dimension of the wavevector basis in such a way 
that it only includes linearly independent basis vectors. However, this is 
not as simple as it might seem at first, because properness is not something 
that is conserved by the Hamiltonian (because W(~A)• in equation (17) 
is not zero). Let us consider this in some detail. 

Say we find that a particular state ]n~0Ko) is one of a set of  n-spin-wave 
states nV e that are linearly dependent with respect to a set nV s of  other 
states in the space. That is to say, all the states in ~V e can be represented 
in terms of states in ~V s. The s t a t e s  [n e) and [~q~') are defined as components 
of  the sets nVe and "W. The "V e corresponds to a set of  improper  degrees 
of  freedom that can be removed from the initial set of  states on which /4 
operates. However,  the action of  H on the remaining set n W will generate 
matrix elements from the space of selected states back to the extra set "W. 
Consider two-spin-wave states. In this case there a r e  2 M  - 2A = N d improper  
degrees of  freedom K ~ is a two-component  array, each component  kl ~ and 
k ~ specifying the wave vectors of  the component  spin waves, 

S oS;olo) 

The action of  /Q on a two-spin-wave state le~K) is to scatter it into all 
t t t . channels [2r such that Ktot = Ktot [i.e., (k~ + k2)moa L = (k~ + kz)moa L, /4 

conserves total wave vector]. Therefore, starting with any state [2~pK) such 

4Matrix theorems used here can be found in Graham (1979) and Nobel (1969). 
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Kto t ,  a a that K t o  t = 0 ~-~ returns state that is linear combination of all two-spin- 
wave states of total wave vector Ktot ,  o n e  component of which is 12~K0). 
This contribution cannot be discarded; rather, as it is a linearly dependent 
state, it must be projected back onto the "V s space. 

One can think of H as an operator that acts on the vector [, s>, whose 
elements '["r are states in the set "V s, to change the order, but not the 
rank, of the set: 

~ r l % "  > = [ " s~ ,~ ] l "~  ~> 

where I 'q / )  is a vector with components in the full space "V s =  " V ' O " V  e 
of dimension "A and order "M. Here ["S y'" ] is an "M x "A matrix. The order 
and rank of a set of states are defined in analogy with order and rank for 
a matrix as the number of  states contained in the set and the number of 
degrees of fredom represented by states in the set. 

The resolution of the overcompleteness problem requires essentially 
three steps. First, choose a reduced basis of linearly independent states. 
Second, orthogonalize the reduced basis. And third, act on the states with 
the Hamiltonian and project the resulting components back on this com- 
plete, orthogonalized basis. While various ways of choosing a reduced 
subspace will be considered in the next section, assume, for the moment, 
that such a selection has been made: a reduced n-spin-wave subspace "V s 
has been chosen whose nonorthogonal basis vectors yield the inner-product 
matrix [of. equation (8)] 

["~%,,,,, = <"~, j %~,,) 

Following L6wdin (1950, 1956), orthogonalize the basis by multiplying 
the basis vectors, given collectively by [ , s ) ,  by the inverse square root of 
["G~]. Writing the transformation for the bth component of [, s}, summing 
over repeated indices, gives 

t"~;) = [~176 

where 

n - s  n - s  _ _  < ~o I ,p~,) - < " < l [ " G s ]  -lob . . . .  ,p c,, - aob 

The orthogonalized reduced basis set provides a projection operator 
I"~#)<"~#']---Y~c]"~){"~#~[, which reduces the order of an overcomplete 
matrix. Applying this to the expression for ["G]["S] in equation (14) used 
in the determination of the eigenvalues [summing over repeated indices, 
and according to the convention of equation [24]), we obtain 

~ s ~ " ~ = <  wo l  ~c>< w c l [  S ' ] l  ~> < ~ I H !  ,~,> . . . . . . . . .  x ,  ,, , 

n s n s - - 1 / 2  n s n s n s - - 1 / 2  n f , s  n f = < ~ l ( [ c ]  I ~ > < ~ I [ G ]  ) [ s ' ] l ~ >  
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= < ~ 1 7 6  ~,,,] 

: (["Gs's]E~ (25) 

The scattering and inner product matrices are "A by "M and "M by nA, 
respectively. There are no improper eigenvalues in the eigenvalue spectrum 
of  this matrix product. Equation (25) embodies a simple and complete 
solution to the kinematical problem, as will become clear in the next section. 

4. OVERCOMPLETENESS AND STATE SPACE REDUCTION 

In this first treatment of  kinematical effects, dynamical interactions are 
eliminated by replacing the diagonal elements of ["S I's ] with their associated 
free-spin-wave energies, and by setting off-diagonal elements equal to zero. 
That is, the magnon approximation will be adopted. Since [~S j;'s] is not a 
square matrix, what I mean by "diagonal matrix elements" are those that 
appear between states ( n ~  I and tn~)  in the reduced basis. Writing the 
hA-dimensional, square matrix of free-n-spin-wave eigenvalues in the 
reduced basis as ["DS], we have 

Because of  the vanishing components in the lower portion of the scattering 
matrix, in this approximation, the inner-product matrix elements connecting 
states in ~V ~ with states in " V  e do not contribute to the product [G][S] .  
Equation (25) reduces to the product of two ~A x "A matrices: 

[ " g ' ]  = ["OS]["D "] 

In addition, neglect the nonorthogonality effects in ["G s] by replacing it 
with the "A-dimensional unit matrix. Clearly, the dynamical interaction, 
nonorthogonality, and overcompleteness are three distinct aspects to the 
problem of  determining the eigenvalues. In this section only overcomplete- 
ness is treated. It is worth underscoring the fact that Hamiltonian is f i x e d  

to be of free-spin-wave form, and this will not be changed by any alterations 
of the state space. When isolated in this way, the issue of overcompleteness 
only concerns the choice of sttates that one includes when taking the 
statistical trace. 

Consider the magnon approximation used by Boch to derive the T 3/2 

law for the reduced magnetization at low temperatures (Martin, 1967). 
There, the population of  spin waves at one wavenumber does not depend 
on the population at another wavenumber. Defining E (k0 ~ K')  as the energy 
of a set of  noninteracting spin waves K' ,  none of which are excited at ko, 
and Eko as the energy of a single free spin wave at ko, one can write the 
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partition function in the Boch approximation as 

Z =~  exp[ - f lE(K)  = ~ exp(--flakoEko) ~ exp[-flE(ko~ K') ]  
K ako K '  

where ako is the number  of  spin waves excited at k0. The ako ranges between 
0 and N. The thermal expectation value for the number operator at ko is 
given in the N ~ ~ limit by a boson distribution function. 

= Y~ ago exp(-- /3akoEko)/~ exp(--/3akoEko) = 1/[exp(/3Eko) -- 1] (26) 
ak 0 l a %  

This result is a sufficient condition for the derivation of the T 3/2 law. Bloch's 
approximation includes contributions from all states in the overcomplete 
basis; there is no state space reduction. With some hindsight it can now be 
said that any approach to the kinematical problem that does not perform 
some state space reduction has, ab initio, missed a large part of  the physics. 

Wenzel and Wagner (1977) were the first to use a reduced spin-wave 
state space. They were concerned with Raman scattering in an antiferromag- 
net above the N6el temperature. The drastic change in the temperature 
dependence of nk that was brought about by their particular state space 
reduction brought theoretical predictions into agreement with observed 
two-magnon Rarnan spectra for the two-dimensional antiferromagnet 
K2MnF4. 

I will derive in a simple manner  the reduction scheme that they used. 
Consider the space of excited states, which has been parameterized in Fock 
space by an array ot whose components ak are the occupation numbers for 
spin waves at wave vector k. A F ock space representation can also be given 
with respect to a site basis using an array s whose components sj label the 
number  of  creation operators acting on site j [cf. equations (2) and (11)]. 
The number  of  sites in position space is equal to the number  of  allowable 
wavenumber  values in k space: N d. I f a  reduced k-space basis is constructed 
by including only states K = (k~, k 2 , . . . ,  k,)  where ki ~ kj for all i and j, 
which is the same as restricting the components  of  a to take either the value 
0 or 1, the dimension of this reduced space will be "A. This follows from 
the isomorphism of the reduced k space with the site-defined Fock space. 
In the site-defined Fock space one has sj = 0 or 1 and ~j  s~ = n. In this simple 
scheme the number of  wave vector states eliminated is exactly equal to the 
number  of  linearly dependent wave vector states "M - "A. Despite its being 
inexact, as will be shown, this scheme allows for a new closed-form 
expression for (nk)r. An important ingredient in making this closed form 
possible is that, as in the unrestricted boson scheme, the number  of  excita- 
tions at wavenumber  k is independent of the number  of spin waves excited 
at k '~k .  



Kinematical Problem in Spin-Wave Theory 773 

If multi-spin-wave states that do not contain excitations at wavenumber 
ko are defined as [/(), then the whole reduced state space is spanned by 

q_ - -  

states that are either of the form I/~) or SkolK).  The partition function for 
free spin waves is 

Z = [1 + exp(--flEko)] E e x p [ - f l E  ( / ( ) ]  
K 

and the expectation value of  the number operator is 

(nko)r = [0- exp 0+  1 �9 exp(--/3Ek~)] ~ {exp[-/3E ( / ( ) ]}Z -~ 
K 

1 (27) 
- exp(/3Eko) + 1 

Considering the nature of the restrictions on the reduced space, 
equation (27) is the expected result: the Fermi distribution. It is also the 
result at which Wenzel and Wagner arrived in order to describe the effect 
of  the kinematical interaction, although their derivation followed different 
lines. At high temperatures the Fermi distribution asymptotically approaches 
the value 1/2, indicative of a system that cannot support any more excitations 
at wavenumber k. At high T the boson distribution increases without bound. 
At sufficiently low temperatures, with k r 0, both distributions are approxi- 
mately Boltzmannian. This agrees with our expectation that kinematical 
effects are small at low temperatures. 

In order to uncover the error in the fermion scheme, recall that /4 
conserves total wavenumber. This allows ["S] to be further broken down 
into block diagonal form where each block is the scattering submatrix ["'PS] 

for n-spin-wave states of total wavenumber p (in a still overcomplete basis). 
In addition, the inner-product matrix, equation (8), also factors according 
to subspaces of fixed total wavenumber. The secular equation of equation 
(19), written in terms of the k-space matrices of equation (24), can be 
written as a product of  factors, one factor for each value of the total 
wavenumber p: 

Det(["G]["S] - A ) = 1] Det([" 'PG][ "'pS] - A ) = 0 
P 

Knowing that the number of states by which the n-spin-wave basis is 
overcomplete is "M - "A, one formally defines " M  p - "A  p to be the number 
of n-spin-wave states by which the set consisting of  states with all possible 
wavenumber assignments at total wavenumber p is overcomplete. A closed- 
form expression for " M  v - " A  v has not been found, but, from looking at 
small systems (cf. Section 5), it seems to be weakly dependent on p, 
approximately of the form ( " M -  " A ) / N  d. 

The fermion scheme of Wenzel and Wagner is not exact, because it 
does not remove the correct number of linearly dependent states from the 
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subspaces of  states with fixed excitation number  n and total wavenumber  
p. In the fermion scheme, the number of states at fixed n and p does not 
equal n M P -  nAY. I illustrate this with an example. 

Consider a ring of six sites and the set of  2-spin-wave states. There are 
six subspaces of  fixed total wavenumber.  The wavenumber  assignments of  
the 2-spin-wave states, divided into K, ot classes, is given as follows: 

Ktot(X N/27r): 0 1 2 3 4 5 
(k,, k2): (0,0) (1,0) (1,1) (2,1) (2,2) (3,2) 

(1, 5) (2, 5) (2, o) (3, o) (3, 1) (4, 1) 
(2, 4) (3, 4) (3, 5) (4, 5) (4, 0) (5, 0) 
(3, 3) (4, 4) (5, 5) 

According to the fermion reduction scheme, remove two states from 
the Ktot = 0 subspace, two from the K t o  t = 2 ,  and two from K t o  t = 4. NO states 
are removed from subspaces of Ktot= 1, 3, or 5. However, if the form of 
the inner product  matrix is worked out, 

(OIS oS_bS~SdlO)=6o~6bd+6ad6b~ ' - -  - -  + + . . . .  - - 3 ~ a + b , c + d  

one finds that the 3 x 3 inner product submatrix for the Ktot = 3 subspace 
is overcomplete: it has two eigenvalues at 1 and one at 0, (any zeros in the 
spectrum of  the inner-product matrix indicate overcompleteness). Alterna- 
tively, if the states ]2, 1), 13, 0), and [4, 5)) are expanded in the site basis, 
one finds [3, 0) = 2(11, 2)+ [4, 5)). The fermion scheme fails to remove linearly 
dependent  states in some cases, while, as it turns out, it eliminates too many 
states in other cases, (that is, it eliminates linearly independent states in 
some cases). 

Another argument throws serious doubt on the applicability of  the 
fermion scheme. The fermion scheme discards many exact eigenstates as 
well as many nearly exact eigenstates in favor of  other states which, although 
linearly independent (modulo the above observations), are poor  approxi- 
mate states. I f  an exact calculation were done, diagonalizing the Hamiltonian 
matrix on a computer,  this would be unimportant,  as any complete basis 
can be used. However, the kinematical problem never presented any serious 
difficulty in exact computation,  as it is trivially resolved by working in a 
site representation. In this case, only proper spin-raising assignments are 
included from the very start. The kinematical problem is serious only in 
the context of perturbation theory. In such a context it is crucial to work 
in a basis that nearly diagonalizes the Hamiltonian. 

We can go further to put a finger on the physical limitations of  the 
fermion reduction scheme. The fermion scheme eliminates states in which 
many spin waves are excited at k = 0. The k = 0 modes are the Goldstone 
modes that reflect the global rotational symmetry of the problem. By 
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eliminating these modes, the fermion scheme breaks rotational symmetry. 
Therefore, it is not clear whether or not, in the fermion scheme, accurate 
values for high-temperature correlation functions can be obtained, no matter 
how many terms we include in perturbation theory. It is clear that the 
fermion scheme cannot be used in the critical region, as there the low-energy 
rotational modes are important  to the restoration of the broken symmetry. 

These criticisms aside, judging from the successes of  Wenzel and 
Wagner, it is likely that the fermion model provides an interpolation scheme 
that is useful for the calculation of certain quantities at temperatures high 
enough so that rotational degrees of  freedom are no longer statistically 
important.  The scale at which this may be the case will have to be determined 
through reference to experiment. 

5. CORRECT SPIN-WAVE STATISTICS 

I now present a third scheme for reducing the state space, which gives 
the correct spin-wave statistics at all temperatures. I will refer to this simply 
as the spin-wave state space and-the resulting distribution function as the 
spin-wave distribution. Although this formulation will not yield immediate,  
closed-form expressions, it accurately reflects spin-wave properties com- 
pletely absent from both the Bose and Fermi descriptions. 

The spin-wave distribution can be defined by introducing an n-depen- 
dent upper  limit Q+(n) to the k-space sums that appear  in the partition 
function: 

( ~ 2  N/2 ) ( N ~ 2  N/2 ) 
E . . . . . .  E " \k~=-N/2 k~'=--N/2 \k~= N/2 kV=--N/2 

\k'[=-O(n)/2 k~'=-O(n)/2  \k~,=-O(.)/2 kY=-O(n)/2 

-= E (28) 
n K 

where it is required that k l <  k~ < .  �9 for the x as well as for the y and z 
components.  Here nK represents the whole space of these ordered, n-spin- 
wave states. 

Q(n)  is a short-wavelength cutoff. It most affects states with a large, 
spin-wave populat ion n. Except for the imposition of a k-space cutoff, the 
sums in (28) are boson-like, that is, they allow multiple occupancy. The 
number  of  states in an n-excitation space, in which the wavevector index 
runs over Q(n)  values and for which multiple occupancy states are allowed, 
is of  the same form as nM, except with N replaced by Q(n). The Q(n) is 
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determined by the condition of equation (29) that the number of district 
terms in the sum (i.e., terms that differ by more than just a permutation of 
indices) equal the number of  proper states in the n-spin-wave subspace, 

Thus, 

in the continuum limit. 

(29) 

Q ( n )  = ( N  ~ - n + 1) 1/a (30) 

Consider (30) in the two following asymptotic cases. For n = 1 there 
is no state space reduction. This is exact because the set of all possible 
single-spin-wave states is complete (the single spin waves are eigenstates). 
At n = N a the state space reduction eliminates all but the one state at 
a k = o ( N  d) = 1. This is correct since at n = N a (all spins reversed) there is 
only one possible configuration, and that is the zero-energy state obtained 
by rotating 10) by 180 ~ 

In addition to equation (30), there is the additional criterion that the 
summations of equation (28) generate the correct counting for each irreduc- 
ible subspace of fixed total wave vector. That is, in the spin-wave picture 
the number of n-spin-wave states with Ktot = (kl +" �9 �9 + k,)mod N, defined to 
be " M ( Q ( n ) ,  ktot), must equal the number of  linearly independent degrees 
of freedom in this subspace, "A(Ktot). 

Unfortunately, no analytic form exists for " M ( Q ( n ) ,  Ktot) or "A(Ktot). 
The problem of determining these quantities exactly is related to the problem 
of finding the number of partitions of an integer T into n additive factors. 
That is, determining the number of distinguishable sets of integers tl, 

n 
t2, . . .  , t n such that ~..j=l tj = T. Problems of this kind generally do not admit 
analytic solutions (Hardn and Wright, 1960). 

On the other hand, it can be argued that because there is no quantity 
to set a scale for an asymmetry in the number of states in different Kto t 

subspaces, this number must be independent of  Ktot in the limit of large 
systems. Some deviation from exact Ktot indepdence, that is, some breaking 
of the symmetry, is expected due to the combinatorial requirement that 
both "A and "A(Ktot) be integers. 

To support these predictions, the behavior of nA(Ktot) was  investigated 
numerically. All values of Kto t and n < N with N = 1-8 were computed in 
one dimension. In order to satisfy both the criteria of equation (30) and 
the requirement that the wavenumber cutoff be integer, it is necessary for 
the upper and lower cutoff values to differ by one in the cases that N is 
odd and n is even, or N is even and n is odd. The expectation that "A(Ktot) 
differs from " A / N  only on a scale of order one [due to the requirement 
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that all "A(Ktot) be integers] is borne out in all cases. Table I shows the 
results for n = N/2 or ( N - 1 ) / 2  for N even or odd. 

If we accept that "A(Ktot) approaches "A/N in one dimension in the 
thermodynamic limit, then this result can be applied to find the limiting 
form of "A(Ktot) in any number of dimensions. Since each irreducible 
subspace is defined by the d components Ktot ,  each component being an 
independent degree of freedom, the total number of states at fixed n and 
N must factor: 

n 1 2 n 1 n 2 
m ( K t o t ,  g t o t ,  �9 �9 . ) =  A [ g t o t )  " A ( K t o t )  . . . .  (31)  

From the assumption of the asymptotic form of nA(Ktot) in one dimension, 
it follows that in d dimensions, in the thermodynamic limit, 

n 1 2 
a(Ktot ,  .) = "A/(N) a (32) K tot~ �9 �9 

It is now necessary to demonstrate that the number of degrees of 
freedom of the spin-wave space given by equation (32) is equal to the size 
of this space given by nM(Q(n),/(tot). The previous argument (that no Ktot 
scale exists that can break the symmetry of ~A(Ktot) in the thermodynamic 
limit) no longer holds for "M(Q(n), Ktot) because Q(n) does introduce an 
asymmetry scale. Actual counting of the number of states in the spaces of  
fixed /(tot, n, and N is easy compared with finding the dimensions of the 
overcomplete subspaces. Some results are shown in the last column of 
Table I. 

It is found that in one dimension, in every case that "M(Q(n)) is evenly 
divisible by N, "M(Q(n),/(tot) exactly equals "A/N. When "M(Q(n)) is 
not evenly divisible by N, the values of "M( Q(n), /(tot) exactly match those 
of "A(Ktot) for every value of n, N, and Ktot tested. It is unlikely that th.~ 

Table I. Exact Number "A(K) of Degrees of Freedom in Spin-Wave Subspaces of Fixed, 
Total Wavevector K and Excitation Number n for Linear Systems of  size N, and Number 
"M(Q(n), K) of Linearly Dependent  Spin-Wave States for Fixed K, N, and N in the Cutoff 

Space 

N n K '~A(K) "M(Q(n), K) 

4 2 0 , 1 , 2 , 3  2, 1,2, 1 2, 1,2, 1 
5 2 0 , 1 , 2 , 3 , 4  2 , 2 , 2 , 2 , 2  2 , 2 , 2 , 2 , 2  
6 3 0, 1 , 2 , 3 , 4 , 5  4, 3, 3, 4, 3 ,3 4, 3, 3, 4, 3 ,3 
7 3 0, 1 , 2 , 3 , 4 , 5 , 6  5, 5, 5, 5, 5, 5 ,5  5, 5, 5, 5, 5, 5 ,5 
8 4 0, 1, 2, 3, 4, 5, 6 ,7  10, 8, 9, 8, 10, 8, 9, 8 10, 8, 9, 8, 10, 8, 9, 8 
9 4 0, 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8  14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 

14, 14, 14 14, 14, 14 
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behavior is a combinatorial coincidence that holds only at small N, because 
the cutoff model has no scale that distinguishes small- from large-scale 
combinatorial behavior. In lieu of a rigorous proof, the evidence obtained 
from small systems can be taken as a strong indication that, at least, 
nM(Q(n), Ktot) goes to nA/N in the thermodynamic limit [and is perhaps 
equal to nA(Ktot) even for small N].  We accept the following likely result 
for one-dimensional systems: 

lim nA(gtot) = lim ~M(Q(n), /( tot)  (33) 
N, noOC~ N,n~oo 

(n/ N)=const (n/  N)=const 

In d dimensions the wavevector cutoff can be written as a vector Q(n),  
each of its components setting a limit on the corresponding component of 
the wave vector. The linear independence of the components of/( tot  then 
implies that each factor in Q(n)  = (Ql(n), Q2(n),...) must be independent. 
This leads to the analogue of equation (32) for the number of states in the 
cutoff scheme in d dimensions, namely 

nM( Q(n), Ktot) = "M( Q(n))/ N a 

which equals nA/N a in the thermodynamic limit. 
Unlike the boson scheme, the spin-wave scheme leads to drastic reduc- 

tions in the number of states when there is a high occupation number. 
Unlike the fermion scheme, this scheme retains the full spectrum of k = 0 
excitations in each subspace. By including all the Goldstone modes, the 
spin-wave space preserves rotational symmetry. This property is crucial in 
such phenomena as critical behavior, where rotational symmetry exerts a 
strong effect. 

Perhaps most importantly, and also unlike the fermion scheme, this 
description retains those states of the n-spin-wave subspace that are closest 
to being eigenvectors of H. This means that the spin-wave space not only 
resolves the overcompleteness problem, but i t  also improves the convergence 
of perturbative expansions in powers of H (see below). However, unlike 
either of the previous schemes, this reduction scheme introduces an n 
dependence into the number of states that can be created at wavenumber 
k. As a result, the calculation of thermal expectation values, even in the 
noninteracting, orthogonal spin-wave approximation, is quite difficult. 

The three models I have discussed will be summarized using two 
different pictorial representations. For simplicity, take d = 1. In a Fock 
space representation the state of the system is parametrized by wavenumbers 
k and occupation numbers ak, and a (k)  is an integer-valued function of 
discrete k. 

The boson state space is defined as the space described by the set of 
all functions a(k) whose range is bounded by upper and lower limits N 
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and 0, for all values of  the argument k that lie in the first Brillouin zone. 
The total number  of  excitations Y~k a(k) is bounded above and below by 
N 2 and 0. 

The fermion scheme can be thought of  as a "squeezing" of the boson 
space in a wavenumber- independent  manner  so as to meet the physical 
requirement that the total number  of  excitations not exceed N:  ~k ak --< N. 
By lowering the maximum number  of  excitations at any given wavenumber  
L+, the allowable space of state-defining functions a(k) is restricted to 
aT(k). The only k-independent  value of L§ to meet this criterion is L+ = 1. 
Any integer-valued function af(k) whose range is limited to [0, 1] automati- 
cally satisfies Y~k ak <- N. Thus, the fermion scheme is, in this sense, the 
simplist state space reduction scheme. The range of a(k) is shown in Figure 
1 for both the Bose and Fermi schemes. 

The spin-wave scheme for state space reduction goes a step beyond 
the fermion scheme by introducing an n dependence into the Fock space. 
While the range of as(k) continues to be from 0 to N d, to allow for a 
realistic low-energy spectrum, its domain is limited to the interval 
( - Q + ( n ) / 2 ,  Q§ The state space consists of  the direct sum of sub- 
spaces of  fixed n in which each excitation carries a wavenumber  kj and 
j = 1 , . . . ,  n. For a one-dimensional system this space is represented using 
the three axes n, j, and kj. Each state of  the system is represented by a line 
that runs from j = 1 to n, passing through the points kj, in one of the fixed 
n planes. The space of states in the Bose and spin-wave schemes is shown 
in Figure 2. 

State space reduction is a large part of  the kinematical effect. While 
nonorthogonali ty works in conjunction with the dynamical interaction to 

Fig. 1. Defining regions of occupation number 
a k as a function of wavenumber for Bose, Fermi, 
and spin-wave state spaces in one dimension. 
Unlike the Bose and Fermi spaces, it is necessary 
to include along with this picture of the spin-wave 
space the additional requirement that Y'k ak <- N. 
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Fig. 2. Limits of the Bose and spin-wave state spaces plotted in coordinates where a point 
(j, k, n) gives the wavenumber k of the jth spin wave in an n-spine-wave excited state. The 
Y'k ak <- N requirement in the cutoff scheme is naturally enforced by the geometry of these 
coordinates. 

destabilize noninteracting spin-wave modes, it is likely that below Tc state 
space reduction has more of an effect on statistics than either the dynamics 
or nonorthogonality. Vaks et al. (1968b) have computed thermal suscep- 
tibilities in a non-reduced-state-space scheme, i.e., the boson scheme, and 
found a weak Kto t dependence for a wide range of Kto t at T-< To. They 
interpret this to mean that spin-wave damping remains small even at T--- Tc ; 
hence, dynamical and nonorthogonali ty effects remain small. However, the 
overcompleteness effects are not small at Tc, because (M 2) = 0 implies the 
average number  of k # 0 spin waves is at a value of N / 2  ( k  ~ 0 spin waves 
must be excited in order to obtain vanishing magnetization squared). 

Above Tc the instability of spin waves (Dietrich et al., 1976; Ermolov 
and Sigov, 1981) is expected to become statistically important.  This can 
also be expressed by saying that soliton modes begin making a significant 
contribution, in analogy with the role of  vortices in the two-dimensional 
X -  Y model (Kosterlitz, 1974). The effect of  working in the spin-wave state 
space, rather than the boson space, will remain large, but the combination 
of dynamical and nonorthogonal effects will become significant as well. 
The appearance of increasingly numerous and increasingly unstable modes 
near the edge of the Brillouin zone is usually associated with the breakdown 
of perturbation theory. However, as the state space reduction removes the 
least stable of  the spin-wave modes (the high-k, high-n modes),  the destabliz- 
ing effects of  the nonorthogonal  dynamical interactions are somewhat 
reduced. While nonorthogonal dynamical interactions will need to be 
included above To, it is possible that through the elimination of the most 
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unstable modes perturbative spin-wave theory may still apply to calculations 
of statistical behavior above T~. 

Finally, it should be emphasized that there is no unique state space 
reduction scheme. Any means of removing the linearly dependent states 
from the basis set will eliminate the unphysical zero eigenvalues. The 
spin-wave reduction scheme given above can thus be further refined--this 
will be considered in subsequent papers. 

6. APPLICATION TO THE BOSON HAMILTONIAN 

The boson reformulation of the Heisenberg spin Hamiltonian (to be 
distinguished from Bloch's boson treatment of the state space) consists in 
defining a ground state ]0) to replace ]0) such that ]0) is annihilated by 
boson operators ak. The state space is constructed by replacing spin-raising 
and -lowering operators with operations a* and ak that obey boson commu- 
tation relations. This second quantized description has been discussed in 
Section 2, equations (9)-11). The boson operator Hamiltonian HB is defined 
so as to reproduce the matrix elements of the scattering matrix of equation 
(13), 

- - o  2 1 , , ~Tj+~] +~7i ~Tj+~(~Tj- ~h+~) z] (34) 
Z j,~ 

Since the boson inner-product matrix ["gB] is just the unit matrix, the 
Hamiltonian matrix is given by 

["hB]Rs  = ( " ~ R t A l " ~ s )  = [ " g ~ ] [ " s ]  = ["s ]  

From the nonhermiticity of /4B it follows that ["h~] is nonunitary and 
generally has complex eigenvalues. The information contained in the matrix 
["g] defined with respect to the spin operators is reintroduced, so that the 
boson problem becomes identical to the spin-operator problem that has 
already been solved. 

The general spin S formula for the scattering of boson states is 

F HB H (~7*)Or[ 0) = Eo+J Y~ (S--�89 (~r*ar[0) 
r L. j,~ 

+-J • [a j -  (2S + 1)]aj H (~7*a'-~'J+%+'10) 
2 j,~ r 

The second term is nondiagonal in the site basis; it raises or lowers by one 
the number of creation operators acting on a site. In order to create a proper 
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state from an improper  state in the sp in- l /2  case it is necessary, due to the 
form of this second term, that the initial improper  state have no more than 
one site b at which ab>  1. At that site ab must equal 2 (in order that the 
state be transformed to one in which ab = 1 by the action of HB). But because 
the off-diagonal contribution vanishes at ab = 2, there is no scattering from 
improper  to proper  states. 5 Dividing the state space into proper  and improper  
blocks, we can write 

[nh]= [[nSP]o)X(A) 

[cf. equation (20)], and 

c RI(HB)mI, S ) ---- )x(A) 

[nl')a](A)x(M-A) ] 
[nvb](M--A)• 

[nv a( m ) ](A)x(M-A) ] ~ [nSB]'n 
n b m 

[ V ](M--A)x(M-A)J  

I f  f(/4B) is a polynomial  in /~B, its eigenvalues are given by [cf. equation 
(23)] 

Det{f([s~]) - A } = Det{f([s~])  - A} Det{f([  v~]) - A } = 0 (35) 

This factoring of the secular equation also hold for general S. From equations 
(23) and (35) one sees that the same proper  eigenvalues are generated in 
the boson scheme as in the spin operator scheme. However, the spin 
formalism generates M - A  zero eigenvalues; the improper  eigenvalues of  
equation (35) are not identically zero. It can also be seen that proper  and 
improper  boson states are uncoupled, neither of  their eigenvalues are 
affected by the presence of states in the other subspace, and their eigenvec- 
tors will be orthogonal. Therefore, the boson state space can be reduced 
by eliminating improper  components without affecting the proper  eigen- 
values. This is a different line of  reasoning than the one that motivated the 
removal of  spin-wave states in the previous formalism. In contrast with the 
spin Hamiltonian matrix discussed before, the boson Hamiltonian matrix 
is not overcomplete. It is not obvious at the start whether or not proper 
and improper  boson states are coupled. It is conceivable, for example, that 
the boson formalism only reproduced proper  eigenvalues through a coupling 
of proper and improper  states. 

Rather than removing improper  states from the boson state space 
directly, they can instead be replaced with zero vectors. An overcomplete 
matrix is obtained whose improper  eigenvalues are zero. This is just what 
[g] does in equation (23). Thus, the solution to the kinematical problem 
for the boson formulatioh is exactly the same as in the spin-operator case. 

SA similar situation was noticed by Wortis with respect to his boson Hamiltonian [Wortis, 
1965, Eq. (34)]. 
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The matrix whose eigenvalues we want to compute is 

["HB] = ["GS'f]["sf~ s] (36) 

where, as before, [nS~S] is an nA x nM matrix with matrix elements between 
an hA-dimensional reduced basis space and the nM-dimensional space of 
all n-boson-spin-wave states. Here [nGS'f] is the inner-product matrix 
defined with respect to the spin-operator basis [cf. equation (8)]. I have 
taken the circuitous route to this conclusion, rather than just simply stating 
it to be obvious from equation (19), in order to show what exactly the 
matrix [G]  is doing to the matrix [S~]. 

When computing the expectation value of a function of/-IB one follows 
equation (21) and computes the eigenvalues of [g]f([s]). Note that [HB]' 
should not be considered a matrix representation of an effective Hamil- 
tonian; it does not simply replace [HB]; if this were so, then one would 
diagonalize f ( [HB] ' )  instead of [G]f(HB]). The point is that no matter 
what functional form HB appears in, the improper eigenvalues are always 
eliminated by premultiptying the matrix function f([SB]) by [G]: [G]  is 
not mixed up in any function dependence, but only plays the role of a 
projection operator. This is an important fact for arriving at approximations 
to [G], as it means that the errors inherent in approximating [G] do not 
become multiplicatively compounded by the appearance of [G] in any 
power series. 

It is possible to approach equation (36) by finding an operator G in 
terms of Bose fields t h ~  reproduces ["G]. With such an operator f (HB)  
would be replaced by Gf(H). Unfortunately, G turns out to be a much 
more complicated operator than /~. It can be written in terms of k-space 
boson operators a*  and ak as a series in powers of a*ak up to (a*ak)". 
Its detailed form is sufficiently complicated to warrant individual attention 
and will appear in a later paper. 

The issue of boson state space reduction is exactly the same as is 
considered in Section 4. There, two schemes to include kinematical effects 
are described: the fermion state space reduction scheme illustrated in Figure 
1 and the spin-wave scheme in Figure 2. The applicability of  these schemes 
does not depend on whether the spaces are spanned by spin or Bose 
operators. Either can be used in the boson operator formalism, each with 
its accompanying advantages and disadvantages. 

The formal solution to the kinematical problem in the calculation of 
the partition function in the boson formulation is 

Z =  Tr (Gexp( - f l /dB))  (37) 

This requires a choice of a reduced state space and the inclusion of an 
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inner-product operator. With the derivation of equation (34) the purpose 
of the present paper  is achieved. 

7. C O N C L U S I O N  

Kinematical effects in the spin operator formalism separate into nonor- 
thogonality effects, embodied in [G],  and overcompleteness, as is treated 
by a state space reduction scheme. Both of  these effects are expected to 
play a major  role in intermediate- and high-temperature thermodynamics.  

Section 4 presents an analysis of two treatments of  the overcomplete 
state space that have been used to date. The first correct description of the 
spin-wave state space is described in Section 5. Section 6 turns to the boson 
model of  Dyson and Maleev and shows that the kinematical problem that 
appears here has the same solution as that derived in the context of  spin 
operators. 

The discussion of Section 6 treated the overcompleteness problem 
independently from the other aspects of  the problem. In at least two 
important instances the statistics of free spin waves appear  independently 
from their dynamics. 

The scattering function S(q, to) which is the Fourier transform of a 
spin-pair correlation function, is proportional  to the inelastic neutron scat- 
tering cross section and is well understood only in the asymptotic regimes 
of very high and very low temperatures (e.g., Loveluck and Windsor, 1978). 
One form for S(q, to) in the intermediate region is (Cable et al., 1981) 

S(q, w) cc (1 --e-'eE(q))-l( E(q )F  , E (q )F  
4- 2 2 ,~l \[E(q)-Eo]2+E(q)2F 2 [E(q)+Eo] +E(q) F-/ 

where Eo and F are characteristic frequency and damping parameters,  
respectively. This form of S(q, w), used in experimental studies of  EuO and 
Gd, 6 is proport ional  to the free-particle distribution, in this case the boson 
distribution, so that alterations in the size of  the state space alter this 
distribution function and affect S(q, w) directly. 

The effects of  state space reduction on (nk))r in the context of  a 
noninteracting particle approximation is also done with the thermal Green's  
function formalism in mind (Dietrich et al., 1976; Loveluck and Windsor, 
1978). In this approach to thermodynamics the thermal Green's  function 
G(k,/3; k', 0) plays a central role in terms of which all thermodynamic 
quantities can be expressed (/3 - 1/kBT). The expansion that is at the heart 
of  thermal Green's  function theory is an expansion in powers of an interac- 
tion Hamiltonian. G(k, 13; k', 0) can be w, .tten in terms of free-particle 

6For the study of EuO and EuS see Dietrich et al. (1976); for the study of Gd see Loveluck 
and Windsor (1978). 
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Green's functions G~ k', 0) multiplied by powers of the interaction 
Hamiltonian. If E ~ is the energy of a single free spin wave of wavenumber 
k, then G~ k', 0) is written as (see Fetter and Walecka, 1971, p. 233) 

A o E (~olo~*o~k exp(--flHB)[~o) 
G~ 13; k, 0)  = ~roduced space) 

"~0 - 
2 (~l exp(-f lHn)]~)  

( r e d u c e d  s p a c e )  

where/~o is the quadratic (noninteracting) part of H8 and the denominator 
is Zo, the partition function in the noninteracting approximation. The free 
particle number operator plays a central role, and can be readily incorpor- 
ated (Wenzel and Wagner, 1977), in the Green's function approach. The 
inclusion of such kinematical effects on the Green's function formalism is 
currently being investigated. 

The free-spin-wave distribution derives from a zeroth-order approxima- 
tion to the many-body wave function of the underlying magnetic medium. 
The multiexcitation free-spin-wave satates are products of individual excita- 
tions. The free-spin-wave space consists of all distinct products of spin 
waves; it does not consist of all possible products: states that have com- 
ponents at wavenumbers too high for the given n-particle subspace are 
excluded. Viewed in terms of spin operators, these excluded states are 
linearly dependent. This is directly analogous to multi-boson and fermion 
spaces also composed of all distinct products of independent particle states. 
The distinctness of a multiparticle state is determined solely by the statistics 
of the particles or, equivalently, the algebra of the operators that represent 
them. Thus, the spin space and the distribution function that follows from 
it are as fundamental to SU(2) algebra systems as are bosons and fermions, 
and the Bose and Fermi distribution functions, to systems based on commu- 
tator and anticommutator algebras. The main result of this work, then, is 
the identification of what wavevector states are distinct in an SU(2) algebra. 
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